Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA.

نویسندگان

  • Patrick Bulau
  • Dariusz Zakrzewicz
  • Kamila Kitowska
  • James Leiper
  • Andreas Gunther
  • Friedrich Grimminger
  • Oliver Eickelberg
چکیده

Protein arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). Three forms of methylarginine have been identified in eukaryotes: monomethylarginine (l-NMMA), asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA), all characterized by methylation of one or both guanidine nitrogen atoms of arginine. l-NMMA and ADMA, but not SDMA, are competitive inhibitors of all nitric oxide synthase isoforms. SDMA is eliminated almost entirely by renal excretion, whereas l-NMMA and ADMA are further metabolized by dimethylarginine dimethylaminohydrolase (DDAH). To explore the interplay between methylarginine synthesis and degradation in vivo, we determined PRMT expression and DDAH activity in mouse lung, heart, liver, and kidney homogenates. In addition, we employed HPLC-based quantification of protein-incorporated and free methylarginine, combined with immunoblotting for the assessment of tissue-specific patterns of arginine methylation. The salient findings of the present investigation can be summarized as follows: 1) pulmonary expression of type I PRMTs was correlated with enhanced protein arginine methylation; 2) pulmonary ADMA degradation was undertaken by DDAH1; 3) bronchoalveolar lavage fluid and serum exhibited almost identical ADMA/SDMA ratios, and 4) kidney and liver provide complementary routes for clearance and metabolic conversion of circulating ADMA. Together, these observations suggest that methylarginine metabolism by the pulmonary system significantly contributes to circulating ADMA and SDMA levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From arginine methylation to ADMA: A novel mechanism with therapeutic potential in chronic lung diseases

Protein arginine methylation is a novel posttranslational modification regulating a diversity of cellular processes, including protein-protein interaction, signal transduction, or histone function. It has recently been shown to be dysregulated in chronic renal, vascular, and pulmonary diseases, and metabolic products originating from protein arginine methylation have been suggested to serve as ...

متن کامل

Cardiovascular tests: use & limits of biochemical markers - therapeutic measurements of ADMA involved in cardiovascular disorders.

Asymmetric dimethylarginine (ADMA) is an endogenously occurring methylarginine that inhibits nitric oxide synthesis. Plasma levels of methylarginines increase in renal failure and certain cardiovascular pathologies, and in patients with end stage renal failure the level of ADMA predicts the risk of cardiovascular events and overall mortality. The object of this review is to describe the mechani...

متن کامل

The lung in the balance: arginine, methylated arginines, and nitric oxide.

THE LUNG IS A MAJOR SOURCE of nitric oxide (NO), be it from nitric oxide synthase (NOS) III in the endothelium of the vast pulmonary circulation, NOS II in the epithelium of the large surface area of the airways, or NOS I in the nonadrenergic noncholinergic nerves (6). NO produced in the lung has major roles in lung physiology, including airway and vascular smooth muscle relaxation, ventilation...

متن کامل

A Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots

Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...

متن کامل

Introduction of Microbial as a Major Factor in the Human Body

The aim of this study is introduction on microbials as an effective agent in the human body. Microbial (symbiotic microorganisms) means the general and universal ecosystem of riches, all genes and masses of micronutrients, regardless of their genera and species, are referred to in a particular section. The symbiotic microbials have a symbiotic relationship with host creatures. This means that t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2007